Publications and preprints
Pilotto, S., Fouqueau, T., Lukoyanova, N., Sheppard, C., Lucas-Staat, S., Díaz-Santín, L. M., Matelska, D., Prangishvili, D., Cheung, A. C. M. and Werner, F. (2021). Structural basis of RNA polymerase inhibition by viral and host factors. Nature Communications, 12, 5523.
Chacin, E., Bansal, P., Reusswig, K., Diaz-Santin, L.M., Ortega, P., Vizjak, P., Gómez-González, B., Müller-Planitz, F., Aguilera, A., Pfander, B., Cheung, A.C.M and Kurat, C.F. (2021) CDK-regulated chromatin segregase promoting chromosome replication Nature Communications,12, 5224.
Hutchings, J., Stancheva, V. G., Brown, N. R., Cheung, A. C. M., Miller, E. A. and Zanetti, G. (2021) Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network. Nature Communications, 12, 2034.
Wang, H., Dienemann, C., Stützer, A., Urlaub, H., Cheung, A. C. M., and Cramer, P. (2020). Structure of the transcription coactivator SAGA. Nature, 10.1038/s41586-020-1933-5.
Cheung, A. C. M. (2019). Building transcription complexes. Nature structural & molecular biology, 26(1), 1–2.
Goswami, P., Abid Ali, F., Douglas, M. E., Locke, J., Purkiss, A., Janska, A., Eickhoff, P., Early, A., Nans, A., Cheung, A. C. M., Diffley, J. F. X. & Costa, A. (2018). Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nature Communications, 9, 5061.
Cheung, A. C. M. and Díaz-Santín, L. M. (2018). Share and share alike: the role of Tra1 from the SAGA and NuA4 coactivator complexes. Transcription, 10.1080/21541264.2018.1530936
Díaz-Santín, L. M., Lukoyanova, N., Aciyan, E. and Cheung, A. C. M. (2017). Cryo-EM structure of the SAGA and NuA4 coactivator subunit Tra1 at 3.7 angstrom resolution. eLife, 6:e28384
Fouqueau, T., Blombach, F., Hartman, R., Cheung, A. C. M., Young, M. J. and Werner, F. (2017). The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nature Communications, 8(1), 1914.
Mühlbacher, W., Mayer, A., Sun, M., Remmert, M., Cheung, A. C. M., Niesser, J., Soeding, J. and Cramer, P. (2015). Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. Proteins: Structure, Function, and Bioinformatics, 83(10), 1849–1858.
Morozov, Y. I., Parshin, A. V, Agaronyan, K., Cheung, A. C. M., Anikin, M., Cramer, P. and Temiakov, D. (2015). A model for transcription initiation in human mitochondria. Nucleic Acids Research, 43(7), 3726–35.
Nagy, J., Grohmann, D., Cheung, A. C. M., Schulz, S., Smollett, K., Werner, F. and Michaelis, J. (2015). Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nature Communications, 6, 6161.
Morozov, Y. I., Agaronyan, K., Cheung, A. C. M., Anikin, M., Cramer, P. and Temiakov, D. (2014). A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Research, 42(6), 3884–93.
Fouqueau, T., Zeller, M. E., Cheung, A. C., Cramer, P. and Thomm, M. (2013). The RNA polymerase trigger loop functions in all three phases of the transcription cycle. Nucleic Acids Research, 41(14), 7048–59.
Engel, C., Sainsbury, S., Cheung, A. C., Kostrewa, D. and Cramer, P. (2013). RNA polymerase I structure and transcription regulation. Nature, 502(7473), 650–5.
Schwinghammer, K., Cheung, A. C. M., Morozov, Y. I., Agaronyan, K., Temiakov, D. and Cramer, P. (2013). Structure of human mitochondrial RNA polymerase elongation complex. Nature Structural & Molecular Biology, 20(11), 1298–303.
Walmacq, C., Cheung, A. C. M., Kireeva, M. L., Lubkowska, L., Ye, C., Gotte, D., Strathern, J. N., Carell, T., Cramer, P. and Kashlev, M. (2012). Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Molecular Cell, 46(1), 18–29.
Cheung, A. C. M. and Cramer, P. (2012). A Movie of RNA Polymerase II Transcription. Cell, 149(7), 1431–1437.
Cheung, A. C. M., Sainsbury, S. and Cramer, P. (2011). Structural basis of initial RNA polymerase II transcription. The EMBO Journal, 30(23), 4755–4763.
Cheung, A. C. M. and Cramer, P. (2011). Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature, 471(7337), 249–253.
Martinez-Rucobo, F. W., Sainsbury, S., Cheung, A. C. M. and Cramer, P. (2011). Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. The EMBO Journal, 30(7), 1302–10.
Blattner, C., Jennebach, S., Herzog, F., Mayer, A., Cheung, A. C. M., Witte, G., Lorenzen, K., Hopfner, K.-P., Heck, A. J. R., Aebersold, R. and Cramer, P. (2011). Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes & Development, 25(19), 2093–105.
Hirtreiter, A., Damsma, G. E., Cheung, A. C. M., Klose, D., Grohmann, D., Vojnic, E., Martin, A. C. R., Cramer, P. and Werner, F. (2010). Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Research, 38(12), 4040–51.
Sydow, J. F., Brueckner, F., Cheung, A. C. M., Damsma, G. E., Dengl, S., Lehmann, E., Vassylyev, D. and Cramer, P. (2009). Structural Basis of Transcription: Mismatch-Specific Fidelity Mechanisms and Paused RNA Polymerase II with Frayed RNA. Molecular Cell, 34(6), 710–721.
Brueckner, F., Armache, K. J., Cheung, A., Damsma, G. E., Kettenberger, H., Lehmann, E., Sydow, J. and Cramer, P. (2009). Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallographica. Section D, Biological Crystallography, 65(Pt 2), 112–20.
Andrecka, J., Treutlein, B., Arcusa, M. A. I., Muschielok, A., Lewis, R., Cheung, A. C. M., Cramer, P. and Michaelis, J. (2009). Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Research, 37(17), 5803–5809.
Narayanan, A., Cheung, A., Gamalielsson, J., Keedwell, E. and Vercellone, C. (2005). Artificial neural networks for reducing the dimensionality of gene expression data. In Bioinformatics Using Computational Intelligence Paradigms (pp. 191–211). Springer.
Chacin, E., Bansal, P., Reusswig, K., Diaz-Santin, L.M., Ortega, P., Vizjak, P., Gómez-González, B., Müller-Planitz, F., Aguilera, A., Pfander, B., Cheung, A.C.M and Kurat, C.F. (2021) CDK-regulated chromatin segregase promoting chromosome replication Nature Communications,12, 5224.
Hutchings, J., Stancheva, V. G., Brown, N. R., Cheung, A. C. M., Miller, E. A. and Zanetti, G. (2021) Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network. Nature Communications, 12, 2034.
Wang, H., Dienemann, C., Stützer, A., Urlaub, H., Cheung, A. C. M., and Cramer, P. (2020). Structure of the transcription coactivator SAGA. Nature, 10.1038/s41586-020-1933-5.
Cheung, A. C. M. (2019). Building transcription complexes. Nature structural & molecular biology, 26(1), 1–2.
Goswami, P., Abid Ali, F., Douglas, M. E., Locke, J., Purkiss, A., Janska, A., Eickhoff, P., Early, A., Nans, A., Cheung, A. C. M., Diffley, J. F. X. & Costa, A. (2018). Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nature Communications, 9, 5061.
Cheung, A. C. M. and Díaz-Santín, L. M. (2018). Share and share alike: the role of Tra1 from the SAGA and NuA4 coactivator complexes. Transcription, 10.1080/21541264.2018.1530936
Díaz-Santín, L. M., Lukoyanova, N., Aciyan, E. and Cheung, A. C. M. (2017). Cryo-EM structure of the SAGA and NuA4 coactivator subunit Tra1 at 3.7 angstrom resolution. eLife, 6:e28384
Fouqueau, T., Blombach, F., Hartman, R., Cheung, A. C. M., Young, M. J. and Werner, F. (2017). The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nature Communications, 8(1), 1914.
Mühlbacher, W., Mayer, A., Sun, M., Remmert, M., Cheung, A. C. M., Niesser, J., Soeding, J. and Cramer, P. (2015). Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. Proteins: Structure, Function, and Bioinformatics, 83(10), 1849–1858.
Morozov, Y. I., Parshin, A. V, Agaronyan, K., Cheung, A. C. M., Anikin, M., Cramer, P. and Temiakov, D. (2015). A model for transcription initiation in human mitochondria. Nucleic Acids Research, 43(7), 3726–35.
Nagy, J., Grohmann, D., Cheung, A. C. M., Schulz, S., Smollett, K., Werner, F. and Michaelis, J. (2015). Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nature Communications, 6, 6161.
Morozov, Y. I., Agaronyan, K., Cheung, A. C. M., Anikin, M., Cramer, P. and Temiakov, D. (2014). A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Research, 42(6), 3884–93.
Fouqueau, T., Zeller, M. E., Cheung, A. C., Cramer, P. and Thomm, M. (2013). The RNA polymerase trigger loop functions in all three phases of the transcription cycle. Nucleic Acids Research, 41(14), 7048–59.
Engel, C., Sainsbury, S., Cheung, A. C., Kostrewa, D. and Cramer, P. (2013). RNA polymerase I structure and transcription regulation. Nature, 502(7473), 650–5.
Schwinghammer, K., Cheung, A. C. M., Morozov, Y. I., Agaronyan, K., Temiakov, D. and Cramer, P. (2013). Structure of human mitochondrial RNA polymerase elongation complex. Nature Structural & Molecular Biology, 20(11), 1298–303.
Walmacq, C., Cheung, A. C. M., Kireeva, M. L., Lubkowska, L., Ye, C., Gotte, D., Strathern, J. N., Carell, T., Cramer, P. and Kashlev, M. (2012). Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Molecular Cell, 46(1), 18–29.
Cheung, A. C. M. and Cramer, P. (2012). A Movie of RNA Polymerase II Transcription. Cell, 149(7), 1431–1437.
Cheung, A. C. M., Sainsbury, S. and Cramer, P. (2011). Structural basis of initial RNA polymerase II transcription. The EMBO Journal, 30(23), 4755–4763.
Cheung, A. C. M. and Cramer, P. (2011). Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature, 471(7337), 249–253.
Martinez-Rucobo, F. W., Sainsbury, S., Cheung, A. C. M. and Cramer, P. (2011). Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. The EMBO Journal, 30(7), 1302–10.
Blattner, C., Jennebach, S., Herzog, F., Mayer, A., Cheung, A. C. M., Witte, G., Lorenzen, K., Hopfner, K.-P., Heck, A. J. R., Aebersold, R. and Cramer, P. (2011). Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes & Development, 25(19), 2093–105.
Hirtreiter, A., Damsma, G. E., Cheung, A. C. M., Klose, D., Grohmann, D., Vojnic, E., Martin, A. C. R., Cramer, P. and Werner, F. (2010). Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Research, 38(12), 4040–51.
Sydow, J. F., Brueckner, F., Cheung, A. C. M., Damsma, G. E., Dengl, S., Lehmann, E., Vassylyev, D. and Cramer, P. (2009). Structural Basis of Transcription: Mismatch-Specific Fidelity Mechanisms and Paused RNA Polymerase II with Frayed RNA. Molecular Cell, 34(6), 710–721.
Brueckner, F., Armache, K. J., Cheung, A., Damsma, G. E., Kettenberger, H., Lehmann, E., Sydow, J. and Cramer, P. (2009). Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallographica. Section D, Biological Crystallography, 65(Pt 2), 112–20.
Andrecka, J., Treutlein, B., Arcusa, M. A. I., Muschielok, A., Lewis, R., Cheung, A. C. M., Cramer, P. and Michaelis, J. (2009). Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Research, 37(17), 5803–5809.
Narayanan, A., Cheung, A., Gamalielsson, J., Keedwell, E. and Vercellone, C. (2005). Artificial neural networks for reducing the dimensionality of gene expression data. In Bioinformatics Using Computational Intelligence Paradigms (pp. 191–211). Springer.